## Quiz 2

Grade AS

**Subject** Pure Mathematics

Paper Name Paper 3

**Duration** 40 minutes

## Student's Information

| Name (Pinyin) | English Name | Class | Group |
|---------------|--------------|-------|-------|
|               |              |       |       |

## Instructions

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Do **not** use an erasable pen or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- You are reminded of the need for clear representation in your answers.

## Information:

- The total mark for this paper is 28.
- The number of marks for each question or part question is shown in brackets [].

| 1. | The variables $x$ and $y$ satisfy the relation $\sin y = \tan x$ , where $-\frac{1}{2}\pi < y < \frac{1}{2}\pi$ . Show that [5] | ,] |
|----|---------------------------------------------------------------------------------------------------------------------------------|----|
|    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos x\sqrt{\cos 2x}}.$                                                             |    |
|    | $\cos x \sqrt{\cos 2x}$                                                                                                         |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | _  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 | •  |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |
|    |                                                                                                                                 |    |

2. The diagram shows the curve with equation

$$x^3 + xy^2 + ay^2 - 3ax^2 = 0,$$

where a is a positive constant. The maximum point on the curve is M. Find the x-coordinate of M in terms of a.



Figure 1: Curve

| <br> | <br> | <br> | • • • • | <br>• • • | <br> | <br> | <br> |       | <br>• • • | <br> | • • • | <br>• • • | <br> | <br> | <br> |
|------|------|------|---------|-----------|------|------|------|-------|-----------|------|-------|-----------|------|------|------|
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
|      |      |      |         |           |      |      |      |       |           |      |       |           |      |      |      |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
|      |      |      |         |           |      |      |      |       |           |      |       |           |      |      |      |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> | • • • | <br>      | <br> | • • • | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
| <br> | <br> | <br> |         | <br>      | <br> | <br> | <br> |       | <br>      | <br> |       | <br>      | <br> | <br> | <br> |
|      |      |      |         |           |      |      |      |       |           |      |       |           |      |      |      |

| 3. | The parametric equations of a curve are                                                                |     |
|----|--------------------------------------------------------------------------------------------------------|-----|
|    | $x = \ln(\tan t), \qquad \qquad y = \sin^2 t,$                                                         |     |
|    | where $0 < t < \frac{1}{2}\pi$ .                                                                       |     |
|    | (i) Express $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of $t$ .                                        | [4] |
|    | (ii) Find the equation of the tangent to the curve at the point where $\boldsymbol{x}=\boldsymbol{0}.$ | [3] |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |
|    |                                                                                                        |     |

4. The diagram shows the curve  $y=10e^{-\frac{1}{2}x}\sin 4x$  for  $x\geq 0$ . The stationary points are labelled  $T_1$ ,  $T_2$ ,  $T_3$ ,  $\cdots$  as shown.



Figure 2: Curve

| (i)  | Find the    | x-coordii | nates of        | $T_1$ and $^\prime$ | $T_2$ , givii | ng each | x—coord     | dinate c | correct to | o 3 deci | imal plac | ces.     | [6] |
|------|-------------|-----------|-----------------|---------------------|---------------|---------|-------------|----------|------------|----------|-----------|----------|-----|
| (ii) | It is giver | n that th | e $x-{\sf coo}$ | rdinate             | of $T_n$ is   | greate  | r than $25$ | . Find   | the leas   | t possib | le value  | of $n$ . | [4] |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |
|      |             |           |                 |                     |               |         |             |          |            |          |           |          |     |

| • |         |
|---|---------|
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   |         |
|   | THE END |